XUnit Test Lifecycles

You are unit testing right? I hope so. If you are you may have run into some scenarios where things are not working quite right. One issue I’ve personally run into is things which attempt to maintain state between tests (eww, I know). Unfortunately, while it is good practice to make sure all of the tests you are writing are completely independent from each other, sometimes shared state will creep in due to other factors (like using an in-memory database because Microsoft kills kittens* and didn’t make Entity Framework easy to mock out).

XUnit Test Context

How many times does a constructor get called for a class in C#? If you answered one, you’d be completely wrong when it comes to XUnit (it kind of surprised me too when I first learned about it). Turns out that as part of the XUnit lifecycle the constructor is called before each test is run, likewise you can implement IDisposable and have Dispose() called after each test is run. While it runs kind of counter to expectations, no state set in any instance variables will be shared between any tests. If you need the ability to share state XUnit provides not one, but two separate options: 1) Class Fixtures and 2) Collection Fixtures. The choice of which to use is entirely dependent upon the scope of what needs to share state. As you’ll see below by default a class is by default a collection although you can also build collections composed of the tests of multiple classes.

Class Fixtures

In order to create a class fixture a small amount of setup needs to be done: a new class needs to be created which will maintain the shared state across all runs of all tests that are part of the class. The test in question needs to implement IClassFixture<YourFixtureName> and your fixture will be passed in as a constructor argument.

An example fixture might be something like:

public class MyFixture{
   private MySuperObject _myInstanceVar;
   public MyFixture(){
       _myInstanceVar = new MySuperObject();
   }

while consuming the fixture would look like this:

public class FixtureTests : IClassFixture<MyFixture>
{
    private MyFixture _fixture;
    public FixtureTests(MyFixture <span class="hiddenGrammarError" pre=""><span class="hiddenGrammarError" pre=""><span class="hiddenGrammarError" pre="">fixture)
    {
         _fixture</span></span></span> = fixture;
    }
}

From a test writers perspective the Fixture mechanism almost looks like a dependency injection engine (except with absolutely zero magic in it).

Collection Fixtures

Collection fixtures operate pretty similarly to class fixtures, although they do require a slightly larger amount of setup. In order to setup a collection fixture, much like a class fixture, you must first define the actual fixture. The wiring logic is a bit different:
First define a collection:

[CollectionDefinition("Awesome Collection")]
public class MyCollection : ICollectionFixture<MyFixture>
{
    // Intentionally left empty. 
}

The actual test class would look like the below:

[Collection("Awesome Collection")]
public class MemberOfMyCollectionTests
{
    private MyFixture _fixture;
    public FixtureTests(MyFixture fixture)
    {
         _fixture = fixture;
    }
}

Note on best practice: it is probably almost always best to pull the collection name out to a constants file to prevent simple typos from dramatically changing the behavior of your tests. But I’m in favor of just using constants everywhere unless there is a compelling reason not to…
Second note: the fixtures must all be in the same assembly. XUnit doesn’t let us get fancy with collection definitions spanning multiple assemblies (not that there would be any big benefit from that)

Fixture Lifetimes

For either of the possible fixture types the lifetime logic is basically the same: the fixture is created immediately prior to the first invocation of the first test in the collection (be it a class-collection or a collection-collection). The fixture is destroyed immediately after the last test in the collection.

XUnit Test Collections

The lifecycle and parallelization of tests is largely driven by the concept of Test Collections. The official documentation does a good job of giving a quick overview. To summarize: by default all tests in a given class are part of the same collection thus will run in a serial fashion. Classes in the same assembly will run their collections in parallel. This behavior is able to customized by specifying a couple of assembly level attributes:

  1. Forces all tests in all classes to be in a single collection – i.e. force serial execution of all tests in the assembly.
    [assembly: CollectionBehavior(CollectionBehavior.CollectionPerAssembly)]
  2. Determines the maximum parallelization of tests. Setting this to 1 only allows one test to execute at a time, although multiple tests may be executed in an interleaved fashion. By default this is equal to the number of virtual CPUs on the PC (which seems to be a good default unless you have some very specific use-cases).
    [assembly: CollectionBehavior(MaxParallelThreads = n)]
  3. Disables test paralleization assembly-wide. Note that this is different than MaxParallelThreads since it actually turns off the parallelization infrastructure in xunit (for the assembly this attribute decorates)
    [assembly: CollectionBehavior(DisableTestParallelization = true)]


*Just kidding. No kittens were harmed in the writing of this post.

A Gentle Introduction to Onion Architecture in ASP.NET MVC – Part 2

In part 1 of this series we discussed what an onion architecture application would look like and discussed the technologies that we can leverage in .Net 4 in order to make that work. In this section we’ll go over how the project is structured, including spending a bit of time looking at how the IoC container is configured. This being a simple application the configuration is significantly easier to understand than it can be in more complex applications.

Project Structure

The application consists of 4 projects: Core, Infrastructure, Infrastructure.Tests, and Web. Each one of these projects has a unique purpose and it behooves all developers to ensure that they don’t mix concerns between projects.

Core Project

The core project is responsible for defining all interfaces for all services which will be implemented in the infrastructure layer, and it also is responsible for having all domain models. In Entity Framework Code First projects, the EF Entity Models can exist in Core. The models that exist in the sample application are not “true” domain models, instead they are just POCO representations

Infrastructure and Test Project

The infrastructure project is responsible for the implementation of all of the services defined in the Core Project. One of the critical distinctions between onion architecture and traditional layered applications is that the data access code (if there is any) will live in an infrastructure style project instead of living in the base/core layer. In the sample application the Infrastructure project only calls out to third-party services. The test project only tests the behavior of the composite service as I have not written this application in a sufficiently decoupled fashion to pass in the RestClient and ideally an abstraction would also be built around the ConfigurationManager

Web Project

As the name probably implies, this is where the “web” parts of the application go, including controllers, views, front-end assets, etc. For this application front end assets are just managed by downloading and saving them into /Scripts, and then everything is manually wired up using the BundleConfig.cs in App_Start. The interactivity within the application is achieved by using a little bit of jQuery.

Dependency Resolution

This application exposes 4 services in total, but only has 2 interfaces. This is due to the fact that the CompositeBounceCheckerService is composed of both MailgunService and SendGridService, hence all three of them share the same interface. The final service, the SuppressionListCheckService just consumes the CompositeBounceCheckerService. This final layer of indirection isn’t, strictly speaking, necessary, however it does afford the ability easily pass one of the service-specific IThirdPartyBounceService services as its dependency if we only wanted to check for suppression in a single ESP. The DefaultRegistry below shows how to get that all setup.

            For<IThirdPartyBounceService>().Use<CompositeBounceCheckerService>()
                .EnumerableOf<IThirdPartyBounceService>().Contains(x =>
                {
                    x.Type<SendGridService>();
                    x.Type<MailgunService>();
                });

This code basically tells StructureMap to scan all registered assemblies (all assemblies listed in the Scan call above this) and register the SendGridService and MailgunService as services within the composite service.

StructureMap is capable of doing a lot more, such as having custom life-cycles for certain services or handling weird object hierarchies (you can do a lot more than just have interfaces and services).

Testing

Testing is fairly direct as we just mock out the services that feed into the service we want to test (generally known as the “SUT” or the System Under Test). One easy example of a test is this:

        [Fact]
        public void Get_Bounces_Returns_A_List_Of_View_Models()
        {
            // Arrange
            var returnList = new List<SuppressedEmailViewModel>
            {
                new SuppressedEmailViewModel
                {
                    AddedOn = DateTime.Now,
                    EmailAddress = "[email protected]",
                    EmailServiceProvider = EspEnum.UNKNOWN,
                    ErrorCode = string.Empty,
                    ErrorText = string.Empty
                }
            };

            var mockService1 = new Mock<IThirdPartyBounceService>();
            mockService1.Setup(x => x.GetBounces()).Returns(returnList);
            // Initialize the composite service with an array of one third party service.
            var compositeService = new CompositeBounceCheckerService(new[] { mockService1.Object });

            //Act and Assert
            var result = compositeService.GetBounces();

            Assert.Equal(returnList, result);
            mockService1.Verify(x => x.GetBounces(), Times.Once);
        }

The code above will first: create data for the Mock to return, then: create and setup the mock, then: inject it into the service, then: call the service, and finally: make sure that the behavior of the service was correct. Having a robust suite of tests allows us to change the implementation of any of the services and still verify that the output is correct.

When writing tests, I generally follow the AAA pattern (Arrange, Act, Assert) and leave comments in the code where those things are happening as an easy way to make sure that my tests are structured in a consistent fashion.

That’s all for now folks. I hope that this two part series on the onion architecture made the benefits of using it a bit more clear.

Please, check out the code on Github, and drop me a line if you have any questions!

A Gentle Introduction to Onion Architecture in ASP.NET MVC – Part 1

Welcome to part one of a multi part series on Enterprise Application in .Net Core! In this series we’ll go over everything that is necessary to build a best in breed enterprise application with the Onion Architecture at its core. The word enterprise is integral in describing the software being described as it is going to be software which is capable of being extended year after year in a clean fashion while allowing things to stay DRY and testable. We’ll cover the following:

  1. System to Design
  2. Initial Architecture and Architectural Considerations
  3. Proper Abstractions Around Each Layer of the “Onion”
  4. Unit Testing

This series of posts isn’t going to exhaustively walk you through every decision that may need to be considered (i.e. we’ll only very briefly discuss localization). My intention with these posts is to put forth my ideas of what a solid architecture looks like. With that being said, the application we are going to design is called “Block List Checker” which is an application which will allow one or more Email Service Providers (ESPs) such as Mailgun, SendGrid, etc. to be queried simultaneously to return a list of all email addresses which are on a suppression list. This is a very simple application which is intentionally somewhat over-engineered for the purposes of illustrating the various components of the system.

Inversion of Control and Dependency Injection

In order to design this software appropriately there are several tools that will need to be incorporated into the solution. The first (and arguably the most important) of these is StructureMap a .Net-friendly IoC/DI Container. For those not familiar: IoC (or Inversion of Control) and DI (or Dependency Injection) are design patterns which help make code much more testable. They do this by “inverting” the dependency chain. The way this plays out in MVC applications is that controllers will be injected with all of the dependencies that all of the services which are used by those controllers require. The IoC container will basically maintain a mapping of interfaces to services and, at runtime, will provide the controller with an instance of the service requested. Due to the fact that this effectively requires loose-coupling between components, writing unit tests becomes much easier (note that the description of IoC here is just barely skimming the surface, entire books have been written on this subject).

Unit Testing

Because this application is so simple, I have opted not to write comprehensive tests around it, however I have written a few tests just to demonstrate using xunit with this application and how the loose coupling allows the testing to be achieved.

Known Issues

This application is very basic and the UI could use a bit of love. It currently targets Asp.Net MVC5 instead of .Net Core MVC6 due to the fact that I prefer writing API access code using RestSharp, and that currently doesn’t seem compatible with .Net Core. I may release another sample project in the not distant future which targets .Net Core. It also currently doesn’t make use of either a proper front end framework, or of most of the functionality that MVC5 exposes on the front end. I haven’t written this application to be overly robust, and due to the nature of how it consumes API keys without any authentication I wouldn’t expose it on a publicly facing web server.

Get the code

With all that being said, the code is available here: https://github.com/lbearl/BlockListChecker.

Part Two of the series is available here